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Abstract
This paper addresses the question of clustering density curves around a unit circle 
by approximating each such curve by a mixture of an appropriate number of von 
Mises distributions. This is done first by defining a distance between any two such 
curves either via L2 or a symmetrized Kullback–Leibler divergence. We show that 
both these measures yield similar results. After demonstrating via simulations that 
the proposed clustering methods work successfully, they are applied on an illustra-
tive sample of Optical Coherence Tomography data.
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1 Introduction

This paper provides a method for clustering density curves around the unit circle by 
approximating each such curve as a mixture of an appropriate number of von Mises 
(vM) distributions. The vM distribution, also known as the Circular Normal (CN) dis-
tribution, is one of the most commonly used models for directions in two-dimensions 
called circular data and has the density function,

where 0 ≤ 𝜇 < 2𝜋 and 𝜅 > 0 are the mean direction and concentration parameter, 
respectively, and Ip(�) is the modified Bessel function of the first kind and order p. 
Although this distribution is unimodal, an appropriate mixture of such distributions 
can be used to model curves with multiple peaks. Indeed, similar to a corresponding 
result on the real line which says that any probability distribution on the real line 
can be approximated by a countable mixture of Gaussians (see [2, 10]), one can use 
a countable mixture of vM distributions to approximate any probability distribution 
on the circle.

Given that each curve can be approximated by such a mixture, the task of cluster-
ing these curves around the circle depends on defining an appropriate “distance” or a 
“divergence measure” between any two curves. To that end, we first consider such a 
distance or divergence measure between any two vM models in the next section, and 
then extend such measures to distances between any two vM mixtures in the subsequent 
section.

2  Measures of Distance and Divergence Between Two vM Models

In this section, we describe two different measures to find the divergence between two 
such vM models, one an actual L2 distance, and the other a measure based on sym-
metrized Kullback–Leibler divergence. Later, we show that either of these provides a 
good “distance” measure between curves around a circle, helping in clustering them, 
and that they indeed provide very similar results. We start with the following useful 
result.

Lemma 1 For any two vM distributions f ∼ vM(�1, �1) and g ∼ vM(�2, �2),

where

Proof We have

f (𝛼;𝜇, 𝜅) =
e𝜅 cos(𝛼−𝜇)

2𝜋I0(𝜅)
, 0 ≤ 𝛼 < 2𝜋

(1)∫
2�

0

f (�)g(�)d� =
I0(�)

2�I0(�1)I0(�2)
,

� =

√
�2
1
+ �2

2
+ 2�1�2 cos(�1 − �2).
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where

  ◻

Note that this Lemma 1 is related to Result J on the convolution of two vM distri-
butions, given in §2.2 of Jammalamadaka and SenGupta (2001) [9], and can also be 
obtained by replacing (� − �2) there by �2.

2.1  L2 Distance Between Two vM Models

Using Lemma 1, the L2 distance between any two vM distributions can be obtained 
and is given by the following

Proposition 1 For any two vM distributions f ∼ vM(�1, �1) and g ∼ vM(�2, �2) , the 
L2 distance is

where

Proof By Lemma 1,

and similarly

∫
2�

0

f (�)g(�)d�

=
1

4�2I0(�1)I0(�2) ∫
2�

0

e�1 cos(�−�1)+�2 cos(�−�2)d�

=
1

4�2I0(�1)I0(�2) ∫
2�

0

e(�1 cos�1+�2 cos�2) cos �+(�1 sin�1+�2 sin�2) sin �d�

=
I0(�)

2�I0(�1)I0(�2)
,

� =

√
(�1 cos�1 + �2 cos�2)

2 + (�1 sin�1 + �2 sin�2)
2

=

√
�2
1
+ �2

2
+ 2�1�2 cos(�1 − �2).

(2)L2(f , g) =
1

2�

(
I0(2�1)

I0(�1)
2
+

I0(2�2)

I0(�2)
2
−

2I0(�)

I0(�1)I0(�2)

)
,

� =

√
�2
1
+ �2

2
+ 2�1�2 cos(�1 − �2).

∫
2�

0

f 2(�) d� =
I0(

√
�2
1
+ �2

1
+ 2�1�1 cos(�1 − �1))

2�I0(�1)I0(�1)

=
I0(2�1)

2�(I0(�1))
2
,
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Thus,

giving us the desired result.   ◻

2.2  Kullback–Leibler (KL) Divergence Between Two vM Models and Its Symmetric 
Version

2.2.1  Kullback–Leibler (KL) Divergence Between Two vM Models

We first obtain a closed form solution to the standard KL divergence between any 
two vM models.

Proposition 2 For any two vM distributions f ∼ vM(�1, �1) and g ∼ vM(�2, �2) , the 
Kullback–Leibler divergence measure is given by

where A(�) is the ratio of modified Bessel functions of the first kind, given by 
A(�) = I1(�)∕I0(�).

Proof Let f (�;�1, �1) and g(�;�2, �2) be two distinct vM distributions, for 
0 ≤ 𝛼 < 2𝜋 . Then, the KL divergence between f and g is given by

∫
2�

0

g2(�) d� =
I0(2�2)

2�(I0(�2))
2
.

L2(f , g) = ∫
2�

0

(f (�) − g(�))2 d�

= ∫
2�

0

f 2(�) d� + ∫
2�

0

g2(�) d� − 2∫
2�

0

f (�)g(�) d�

=
1

2�

(
I0(2�1)

(I0(�1))
2
+

I0(2�2)

(I0(�2))
2
−

2I0(�)

I0(�1)I0(�2)

)
,

(3)KL(f , g) = log I0(�2) − log I0(�1) + �1A(�1) − �2 cos(�1 − �2)A(�1),
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Writing the integrand in the last term as

and using the relations (see, e.g., Jammalamadaka and SenGupta (2001) [9], p.36) 
below,

the last term becomes

giving us the desired result.   ◻

KL(f , g) = ∫
2�

0

log

[
f (�)

g(�)

]
f (�) d�

= ∫
2�

0

{
log

[
I0(�2)

]
− log

[
I0(�1)

]
+ �1 cos(� − �1) − �2 cos(� − �2)

}

⋅

e�1 cos(�−�1)

2�I0(�1)
d�

= log
[
I0(�2)

]
− log

[
I0(�1)

]
+ �1

I1(�1)

I0(�1)

− �2 ∫
2�

0

cos(� − �2)
e�1 cos(�−�1)

2�I0(�1)
d�.

cos(� − �2) = cos(� − �1 + �1 − �2)

= cos(� − �1) cos(�1 − �2) − sin(� − �1) sin(�1 − �2),

1

2� ∫
2�

0

cos(p�) exp(� cos �) d� = Ip(�),

1

2� ∫
2�

0

sin(n�) exp(� cos �) d� = 0,

�2 ∫
2�

0

cos(� − �2)
e�1 cos(�−�1)

2�I0(�1)
d�

= �2 ∫
2�

0

[
cos(�1 − �2) cos(� − �1) − sin(�1 − �2) sin(� − �1)

]

⋅

e�1 cos(�−�1)

2�I0(�1)
d�

= �2 cos(�1 − �2)∫
2�

0

cos(� − �1)
e�1 cos(�−�1)

2�I0(�1)
d�

− �2 sin(�1 − �2)∫
2�

0

sin(� − �1)
e�1 cos(�−�1)

2�I0(�1)
d�

= �2 cos(�1 − �2)
I1(�1)

I0(�1)
,
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Remark 1 In general, such a KL divergence is not symmetric, but in the special case 
when �1 = �2 say with a common concentration � , the DKL divergence between two 
vM distributions becomes symmetric, and we have

where A(�) = I1(�)∕I0(�).

Graphical evidence for the lack of symmetry for KL divergence can be seen in 
Fig. 1 where the black solid like representing the KL divergence for �1 = 1 , �2 = 3 
is clearly not identical to the KL divergence when �1 = 3 and �2 = 1 , denoted by the 
dashed blue line.

2.2.2  A Symmetrized Kullback–Leibler (SKL) Distance Between Two vM Models

As remarked above, although this KL divergence becomes symmetric in the special 
case when the concentration parameters are the same, in general it is well known the 
KL measure lacks symmetry. We now consider a simple symmetric version of the 
KL divergence namely

We will refer to this as the symmetric KL divergence or SKL. From the preceding 
Proposition 2, it is easy to check the following conclusion.

Proposition 3 The symmetric KL divergence SKL, between two vM distributions 
f ∼ vM(�1, �1) and g ∼ vM(�2, �2) is given by

KL(f , g) = KL(g, f ) = �A(�)[1 − cos(�1 − �2)],

SKL(f , g) = DKL(f , g) + DKL(g, f ).

Fig. 1  KL-Div. vs |�
1
− �

2
| , for fixed �

1
, �

2
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where A(�) is the ratio of modified Bessel functions of the first kind, given by 
A(�) = I1(�)∕I0(�).

Remark 2 Jensen–Shannon divergence: One may also consider a slightly more gen-
eral symmetrized version, called the Jensen–Shannon divergence given by

noting that mixtures of vM distributions are known to be identifiable (see, e.g., 
Frazer et al. [3] and Holzmann et al. [5]).

2.3  A Visual Comparison of the L2 and SKL Measures

Figures  2 and 3 illustrate these two divergence measures side-by-side in terms of 
how they change by varying |�1 − �2| , or �2 − �1 , or both. Although the magnitudes 
of the two measurements are different—indeed SKL is ∼ 10 times the L2 distance 
given the same parameters in vM mixture—they provide comparable results judging 
by the similarities in the shapes of the line plots and 3D plots between the two.

3  L2 Distance and the SKL Divergence for vM Mixtures

As suggested earlier, we plan to use vM mixtures with an appropriate number of 
components to model any curve around the circle. Consider any 2 such mixtures h1 
and h2 denoted by

with the usual restrictions on the mixture proportions, 
∑

i pi =
∑

j qj = 1 . Then, the 
L2 distance between the two mixtures h1 and h2 can easily be defined using Proposi-
tion 1 above, and we have

SKL(f , g) = �1A(�1) + �2A(�2) − cos(�1 − �2)
[
�2A(�1) + �1A(�2))

]

SKLJS(f , g) =
DKL

(
f ,

f+g

2

)
+ DKL

(
g,

f+g

2

)

2

h1(�) =

k∑

i=1

pifi(�) and h2(�) =

l∑

j=1

qjgj(�),
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When extending the idea of SKL divergence to mixtures of vM distributions, we 
must proceed carefully as no closed form expression exists for

L2(h1, h2) = ∫
2�

0

[
k∑

i=1

pifi(�) −

l∑

j=1

qjgj(�)

]2

d�

=

k∑

i=1

k∑

i�=1

pipi� ∫
2�

0

fi(�)fi� (�) d�

+

l∑

j=1

l∑

j�=1

qjqj� ∫
2�

0

gj(�)gj� (�)d�

− 2

k∑

i=1

l∑

j=1

piqj ∫
2�

0

fi(�)gj(�) d�.

Fig. 2  From left to right: L2 distance and SKL distance vs |�
1
− �

2
| , for fixed �

1
, �

2
 ; L2 distance and SKL 

distance vs �
2
− �

1
 , for fixed �

1
= �

2
= � and �

1
 . Note that the y-axis scales are different for L2 and SKL 

distance
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unlike what we had for the single components. Because of this, we need to resort to 
numerical integration techniques to evaluate this divergence.

4  A Simulation Study to Judge the Effectiveness of Clustering via L2 
and SKL Measures

Our simulation procedure starts with given vM mixtures with known numbers of 
components and pre-specified parameter values for each component. Our goal is to 
assess how these two measures perform in identifying the known clusters, under 
varying distributional conditions. The cases we choose and the parameter values 
selected, are given in Table 1 below.

Each scenario consists of 3 vM mixture distributions—two 2-component mix-
tures and one 3-component mixture—with different parameter values. Case 1 

DKL(h1, h2) = ∫
2�

0

log

[
h1(�)

h2(�)

]
h1(�) d�,

Fig. 3  3D plots for L2 distance (left) and SKL distance (right) vs |�
1
− �

2
| and �

2
− �

1
 for fixed �

1
 . Note 

that the color scales are different for L2 and SKL distance
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contains vM mixtures that have equal mixture weights p, moderately high �’s, and 
with differences between � ’s that are large enough such that the number of com-
ponents k equals the number of modes. Case 2 has unequal p’s and thus unequal 
heights for each mode. These cases aim at showing how sample-based parameter 
estimation and component selection results are affected by the underlying mixture 
distributions.

With the parameter values set for the mixture distribution, we take n = 5 samples, 
each sample being of size m = 100 . We use the 100 observations from each sample 
to fit a mixture distribution, estimating the mixture model parameters via the EM 
algorithm proposed by Dhillon and Sra [8] and Banerjee et al. [1], and implemented 
by Hornik and Grün in the R statistical software package movMF [7]1. Since the 
parameter estimation method does not automatically select the number of mixture 
components, we apply the BIC criterion to select the number of components, say 
between 2, 3, 4, or 5. From each of the 3 true mixture distributions for each case 
study, we generate n = 5 estimated mixture distributions using the samples drawn.

Figure 4 graphically demonstrates the efficacy of the estimated mixtures in recov-
ering the true mixture. In the grid of plots, the rows represent the case study and 
the columns represent the three different vM mixture distributions within each case. 
In any particular plot, the black dashed line is the true density, while the colored 
solid lines are the five density estimates associated with the five samples. Case 1 
shows good consistency between true and estimated density curves, except for the 
red curve in vM mixture 3 which is flat and gives only k = 1 component. Case 2 

Table 1  Simulated Data 
Parameter Values

Case Mixture Component � (rad.) � p

Case 1 vM-mix A f
1
(�;�, �) 0 4.0 0.5

f
2
(�;�, �) 2�∕3 ( ≈ 2.09) 4.0 0.5

vM-mix B f
1
(�;�, �) � ( ≈ 3.14) 3.0 0.5

f
2
(�;�, �) 5�∕3 ( ≈ 5.24) 3.0 0.5

vM-mix C f
1
(�;�, �) 0 5.0 0.333

f
2
(�;�, �) 2�∕3 ( ≈ 2.09) 5.0 0.333

f
3
(�;�, �) 4�∕3 ( ≈ 4.19) 5.0 0.333

Case 2 vM-mix A f
1
(�;�, �) 0 4.0 0.75

f
2
(�;�, �) 2�∕3 ( ≈ 2.09) 4.0 0.25

vM-mix B f
1
(�;�, �) � ( ≈ 3.14) 3.0 0.25

f
2
(�;�, �) 5�∕3 ( ≈ 5.24) 3.0 0.75

vM-mix C f
1
(�;�, �) 0 5.0 0.20

f
2
(�;�, �) 2�∕3 ( ≈ 2.09) 5.0 0.60

f
3
(�;�, �) 4�∕3 ( ≈ 4.19) 5.0 0.20

1 This algorithm and implementation describe fitting the parameters of von Mises-Fisher (vMF) mix-
ture models, a direct higher-dimensional extension of the vM distribution with observations on the unit 
sphere/hypersphere. In two dimensions, this reduces to the vM distribution.
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shows that smaller � values can impair this consistency, as wrong values of k are 
often chosen.

4.1  Clustering of Simulated Data with L2 and SKL Measures

After estimating vM mixture parameters from simulated samples for each case 
study, we can compute L2 or SKL distances between each pair of samples and 
obtain distance matrices. Then, a hierarchical clustering method is used to dis-
cover the clusters. We selected the complete linkage method and show the clus-
tering results in heatmaps and dendrograms—heatmaps are to show the magni-
tudes of distance measures between any given pair of estimated vM mixtures, and 
dendrograms are to show the structures of clustering hierarchy. Ideally, what we 
would like to see are the clustering procedure, when stopped at 3 clusters, com-
pletely separates the estimated density curves based on which mixture distribu-
tion their samples are generated from, i.e., each of the 3 clusters should contain 
the 5 densities estimated from the common true density.

Both L2-based clustering and SKL-based clustering are able to recover the cor-
rect cluster membership for all the samples as illustrated in Figs. 5 and 6, which 
display row end dendrograms and heatmaps for these two clustering metrics. 
For both Cases 1 and 2, within-cluster L2 distances are very close to zero, while 
between-cluster L2 distances are much larger than within-cluster L2 distances. The 
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Fig. 4  Estimated Density Curves vs. True Density Curves. The three plots in each row correspond to the 
three vM mixtures in each case. Black dashed lines are the true density curves, and colored solid lines 
are estimated density curves generated from our five samples



 Journal of Statistical Theory and Practice (2021) 15:38

1 3

38 Page 12 of 17

heatmap patterns suggest that, for arbitrary samples denoted by s1, s2, t1 and t2 , the 
distance L2(s1, t1) ≈ L2(s2, t2) as long as s1 , s2 are in the same cluster and t1 , t2 are 
in the same cluster. Similar behaviors are observed for SKL distances.

4.2  Agreement Between L2 and SKL Clustering Hierarchy

Figures 5 and 6 helped to visually establish the similarities between the hierarchies 
of L2 and SKL clustering through the resemblance of heatmap patterns and identical 
cluster membership when the number of clusters is fixed at 3. In addition, we will 
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Fig. 5  L2 Clustering Heatmap of Simulated Data. Color key represents the L2 distance
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Fig. 6  SKL Clustering Heatmap of Simulated Data. Color key represents the SKL distance

Table 2  L
2
 and SKL Hierarchy 

Agreement for Simulation Study
Euclidean Cosine Cophenetic Gamma

0.0387 0.9258 0.7320 0.7410
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also quantify the similarities by computing the hierarchy agreement of their respec-
tive ultrametrics in Table 2.

For the collection of subsets � induced by a hierarchical clustering scheme, the 
distance hij between curves i and j is defined as the height of the node that gener-
ates the smallest set containing both elements, such that the collection of heights, 
{hij; for i, j ∈ �} , satisfies the ultrametric inequality,

There are a variety of metrics that can be employed to compare the respective hier-
archy ultrametrics, but we will restrict our analysis to looking at four of the metrics 
that come standard in R package clue [6]:

Euclidean: when we take d as the square root of the sum of the squared differ-
ences of ultrametrics, the Euclidean agreement is given as 1∕(1 + d).
Cophenetic: product-moment correlation of the respective ultrametrics, also 
known as the cophenetic correlation coefficient.
Cosine: the cosine of the angle between the respective ultrametrics.
Gamma: a linear transformation of Kruskal’s gamma, 1 − d , where we take d as 
the rate of inversions between respective ultrametrics, uij < ukl and vij > vkl , for 
pairs (i, j) and (k, l).

For a fuller treatment of ultrametrics in hierarchical comparisons, see [4].

For all of these four metrics, the value falls between 0 and 1, and a value closer 
to 1 indicates higher similarity between the ultrametrics of the two clustering hierar-
chies. While the Euclidean metric is very small, the other three metrics, in particular 
the cosine metric, are all fairly close to 1, which indicates a high level of similarity.

5  A Real Data Application—Eye Imaging Analysis

5.1  Optical Coherence Tomography

Purely for illustrative purposes as to how these clustering techniques work, we now 
look at a small sample of 100 curves based on eye imaging data. A comprehensive 
analysis of the original data set, from which this small sample is selected for illustra-
tion, is in preparation and will appear elsewhere. Optical Coherence Tomography 
(OCT) is a noninvasive imaging technique that uses a broadband light source parti-
tioned into a reference beam and sample beam to generate a reflectivity versus depth 
profile that details an approximate in-vivo retinal biopsy. The top panel of Fig.  7 
shows a diagram of the retina, with the optic disc, optic cup, as well as labels of the 
four quadrants of the eye, superior, nasal, inferior, and temporal.

hij ≤ max
(
hik, hjk

)
∀i, j, k ∈ � [3]
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5.2  General Characteristics of the Illustrative Data

Although an OCT measurement for each eye can be taken continuously around the eye, 
for our purposes, it is measured on a discrete grid of regularly spaced angles around the 
eye. Since the measurements are taken radially around the circumference of the retina, 
these curves are circular in nature and are amenable to methods described here. The 
bottom panel in Fig. 7 is an example of a randomly selected OCT curve plotted on a 
linear scale. The task is to cluster these circular density curves into an unknown num-
ber K homogeneous groups based on curve features, via the estimated vM mixtures. 

Fig. 7  From top to bottom, A 
scanned image of the eye, and 
an example OCT data plotted 
on the line
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We scaled these curves so that each represents an empirical circular density, and our 
proposed density clustering methodology is applicable. All of the 100 scaled curves are 
shown in Fig. 8. The results of hierarchical clustering by using L2 and SKL distances 
are represented by the dendrograms in Fig. 9.

Because this task is unsupervised, without a ground truth with respect to the number 
of clusters or cluster membership, we will look at cluster agreement between the two 
schemes via their respective ultrametrics in Table 3. Euclidean metric is very small, 
Cosine metric is close to 1, and the rest two metrics are in the middle. This implies that 
L2 and SKL clustering hierarchies are fairly similar.

6  Concluding Remarks

The principal aim of this paper is to describe methods of functional clustering, 
when dealing with periodic curves around a circle, in particular circular density 
curves. It is shown that this can be accomplished successfully by approximat-
ing each density curve by a vM mixture, and clustering them using the distance 
matrix computed from vM mixture parameters. After demonstrating via simu-
lations that this technique works successfully, it is applied on a practical OCT 
data set. The R-code for fitting such mixtures and clustering them, is available by 
requesting the authors.

Fig. 8  A sample of 100 scaled OCT Curves



 Journal of Statistical Theory and Practice (2021) 15:38

1 3

38 Page 16 of 17

References

 1. Banerjee A et al (2005) Clustering on the unit hypersphere using von Mises- Fisher distributions. J Mach 
Learn Res 6:1345–1382

 2. Ferguson TS (1983) Bayesian Density Estimation by Mixtures of Normal Distributions. In: Rizvi M, 
Rustagi J, Siegmund D (eds) Recent Advances in Statistics, vol 24. Academic Press, Cambridge, pp 
287–302

 3. Fraser MD, Hsu YS, Walker JJ (1981) Identifiability of finite mixtures of Von Mises distributions. Ann 
Stat 9(5):1130–1131

 4. Gordon AD (1999) Classification, 2nd edn. Monographs on Statistics&amp; Applied Probability. CRC 
Press, Chapman & Hall/CRC, Boca Raton

Fig. 9  Dendrograms for L2 (left) and SKL (right) Hierarchical Clustering

Table 3  L
2
 and SKL Hierarchy 

Agreement for OCT Data
Euclidean Cosine Cophenetic Gamma

0.0565 0.8658 0.3887 0.6678



1 3

Journal of Statistical Theory and Practice (2021) 15:38 Page 17 of 17 38

 5. Holzmann H, Munk A, Stratmann B (2004) Identifiability of finite mixtures-with applications to circular 
distributions. Sankhyā 66(3):440–449

 6. Hornik Kurt (2019) clue: Cluster ensembles. R package version 0.3-57. https ://CRAN.R-proje ct.org/packa 
ge=clue

 7. Hornik Kurt, Grün Bettina (2014) “On maximum likelihood estimation of the concentration parameter 
of von Mises-Fisher distributions”. In: Computational Statistics 29.5, pp. 945-957. ISSN: 1613-9658. 
https ://doi.org/10.1007/s0018 0-013-0471-0

 8. Dhillon IS, Sra S (2003) Modeling Data using Directional Distributions. Tech. rep. TR-03-06. Austin, TX 
78712: Department of Computer Sciences, The University of Texas at Austin, Jan. https ://www.cs.utexa 
s.edu/users /inder jit/publi c_paper s/tr03-06.pdf

 9. Jammalamadaka S.Rao, SenGupta A (2001) Topics In Circular Statistics. Vol. 5. Series on Multi-
variate Analysis. Singapore, London, New Jersey, Hong Kong: World Scientific Publishing Co. Pte. 
Ltd., ISBN: 9810237782

 10. Teicher H (1960) “On the Mixture of Distributions”. In: The Annals of Mathe- matical Statistics 
31.1, pp. 55–73. http://www.jstor .org/stabl e/22374 93

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://CRAN.R-project.org/package=clue
https://CRAN.R-project.org/package=clue
https://doi.org/10.1007/s00180-013-0471-0
https://www.cs.utexas.edu/users/inderjit/public_papers/tr03-06.pdf
https://www.cs.utexas.edu/users/inderjit/public_papers/tr03-06.pdf
http://www.jstor.org/stable/2237493

	Functional Clustering on a Circle Using von Mises Mixtures
	Abstract
	1 Introduction
	2 Measures of Distance and Divergence Between Two vM Models
	2.1  Distance Between Two vM Models
	2.2 Kullback–Leibler (KL) Divergence Between Two vM Models and Its Symmetric Version
	2.2.1 Kullback–Leibler (KL) Divergence Between Two vM Models
	2.2.2 A Symmetrized Kullback–Leibler (SKL) Distance Between Two vM Models

	2.3 A Visual Comparison of the  and SKL Measures

	3  Distance and the SKL Divergence for vM Mixtures
	4 A Simulation Study to Judge the Effectiveness of Clustering via  and SKL Measures
	4.1 Clustering of Simulated Data with  and SKL Measures
	4.2 Agreement Between  and SKL Clustering Hierarchy

	5 A Real Data Application—Eye Imaging Analysis
	5.1 Optical Coherence Tomography
	5.2 General Characteristics of the Illustrative Data

	6 Concluding Remarks
	References




